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Abstract   Rigorous derivation of the correction to the
dyadic Green s function for a microstrip structure
containing complex layered media is done for imperfect
metallization.  A hierarchy of formulas is found consistent
with a full-wave electromagnetic code employing zero
thickness extent conductors for the guiding structure metal.
At the bottom of the hierarchy are formulas which are only
dependent on the conductor geometry and material
properties.  Numerical examples show the sensitivity of the
attenuation constant to these formulas.

I. INTRODUCTION

Spectral domain codes based upon the moment method

which solve the electromagnetic integral equation problem

for a multi-layered structure can place their prime focus on

the material properties of the layers.  Studies of the

various anisotropies, nonreciprocities, crystallographic

rotations, biasing field orientations in ferromagnetic or

ferroelectric materials, can all be done with such codes [1],

[2].  Theoretical investigations of this nature can be useful

in deciding what structures to construct for integrated

circuit applications [3].  Device behavior will most often

be decided by the resulting phase properties of the

transmission structures (phase shifting, coupling, delay,

for example).  However, being able to reasonably

accurately predict the loss consequences of the imperfect

metallizations used in actual devices may be necessary for

the eventual development of working devices in circuits.

Full-wave electromagnetic codes employing zero

thickness extent conductors for the guiding structure metal

can be modified to account for the finite conductivity of

the metallization and thickness.  The most straight

forward modifications, which are self-consistent in that

they avoid any perturbational approaches, will alter the

structure interfacial dyadic Green s function [4], where the

guiding metal is located, with an expression which only

depends upon the metal properties.  These modifications

can be employed most broadly for different spectral

domain codes.  Such modifications can be shown to come

from a more general class of modifications which require

additional structure dyadic Green s functions at the

interface.  Governing equations which employ these

additional structure dyadic Green s functions at the

interface have a form which is applicable to different

spectral domain codes, but each code will require its own

specific interfacial dyadic Green s functions to actually

effect the modification.  Thus the more general approach

can not be as easily applied to different spectral domain

codes.

For situations where the metallizations are very thick

compared to other structure geometric dimensions, where

the metallization thicknesses are expected to significantly

alter the basic device behavior, or when it is desired to

obtain the nearly exact field distribution in the

metallization vicinity, the approach discussed in this paper

should not be used.  Other methods are available.

II. GENERAL  THEORY

At the guiding metal interface

E E E        = +d c
  (1)

E  is the total electric field vector at the interface.  Ed  is

the electric field vector at the interface where there is a

dielectric mismatch.  Ec  is the electric field vector at the

interface where there is a conductor.  Ed  and  Ec   are zero

outside their existence range.  Since we will test this

relationship with surface currents, it is the tangential form

which is of greatest interest.

E E E
tan , tan , tan        = +d c   (2)

Multiply the total electric field by a test surface current

vector  Jsj  and integrate over the interfacial coordinate  x.

The result is

E J E J E J
tan , tan sj , tan

        ⋅ ⋅ ⋅∫ ∫ ∫= +
sj d c sj

dx
b

dx
b

dx
b

0 0 0

 (3)

Because  Ed   and  Jsj  are complementary functions on

the finite  x-space, and using Parseval’s theorem, we

obtain

˜   ˜ ( ,  )

 

˜ ( )     
tan , tan

E E J−

= − ∞

∞

⋅ =




∑ c av

sjn y

n

n 0   (4)

The term in wedge brackets represents some transform

averaging over the thickness of the conductor, say over

slices taken at different  y  values  y  ∈  [0, t ].  This

averaging is not unique.
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III. SURFACE IMPEDANCE AND DYADIC GREEN S

FUNCTION

Here will consider the conductor to be thick enough that

it can be viewed as being composed of an upper piece of

one material having a surface impedance  Zsu  and a lower

piece having Zsl .  Electric field at either surface is given

by

˜     ˆ ˜E Hs s sZ n= ×( ) (5)

n̂  is the surface normal pointing from the metal into the

upper or lower region.  We find that

˜ ( , ) ˜ , ˜

ˆ ˜ , ˜
  

, tan , tan , tan

           

E E E

H H

c u l av

u su sui sl sli av

n y
av

n Z Z a
ii

n

=

= × −
=
∑

1

   (6)

Linearity property of the averaging operator     av   has

been used to extract the coefficients  ai  and the vector

ˆ   ˆn yu = .  Upper and lower surface magnetic fields may

be related by

ˆ ˜     ˆ ˜     ˜n n
u sui u sli si

× = × +H H J (7)

˜     ˜H G JH Jsli s si= (8)

Relation (7) is exact at a single interface, so it must be

viewed as an approximation for the finite thickness metal,

somewhat convincingly since the fields in it are tied

together by the single surface current characteristic of

infinitely thin Green s function spectral domain solvers.

Equation (8) may be used to eliminate unknown upper

field  H̃sui   by using a magnetic dyadic Green s function

for the unknown lower field  H̃sli , giving the modified

′ += − ×



 − ×





G G G G
E J E J E J E Js si s si

su u
s si

sl u
s si

Z n Z n
av

˜ ˜ ˜ ˜
ˆ ˆ,1

  (9)

The above reduction is valid if the averaging operation is

strictly linear, in actuality required in a rigorous sense

since the Green’s function approach is a linear process.

Equation (9) is a rather remarkable result, as it allowed us

to write down by inspection the new Green’s function for

the finite sized and finite conductivity metal strip in our

anisotropic layered structure. We will not pursue this

approach further, other than to say that although the form

has been presented, it does not prove that in fact such a

closed form representation can be found.  Instead, in order

to have some specific rules for constructing the average,

resort to a procedure found in [5].  For any two spectral

vectors  Ã  and  B̃  , the average is

  ˜ ,  ˜ ˆ  ˆA B
av

x x x x

x x

z z z z

z z

A A B B

A B
x

A A B B

A B
z=

+

+
+

+

+
(10)

Inversion of the magnitudes in formula (10) will make the

averaging operator nonlinear, showing that such a

construction to account for finite thickness and

conductivity of the metal must be an approximation, since

the actual problem is linear in the current J̃s .

Nevertheless, we will enlist this formula to have

something definite to discuss.  From (10),

˜ ( , )
˜ ˜   ˜ ˜

˜   ˜
ˆ  

                            
˜ ˜   ˜ ˜

˜   ˜
ˆ

,tan ,

 

Ec av i

su suxi su suxi sl slxi sl slxi

su suxi sl slxi

su suzi su suzi sl slzi sl slzi

su suzi sl slzi

n y
Z J Z J Z J Z J

Z J Z J
x

Z J Z J Z J Z J

Z J Z J
z

=
+

+

+
+

+

(11)
Equation (11) produces what can only be called an

improper Green’s function. Consider what happens when

the upper and lower surface impedances are equal,

Z Zsu sl  = ,

G G
E J E J

s si s si
s

suxi suxi slxi slxi

suxi slxi sxi

suzi suzi slzi slzi

suzi slzi szi

Z

J J J J

J J J

J J J J

J J J

′ ( )

( )























= −

+

+

+

+

˜ ˜ ˜ ˜

˜ ˜ ˜

˜ ˜ ˜ ˜

˜ ˜ ˜

0

0

(12)

This type of Green’s function only has meaning when used

to reconstruct the  Ẽsi
′  difference field found in the

testing procedure (4).  And it is not unique - only when

multiplied by  J̃si
  is the result unique.  ′G

E Js si
˜   has

been shown to demonstrate the intrinsic complexity of

trying to get a tractable modified Green’s function using

the averaging method in (10).

IV. TANGENTIAL FIELD BEHAVIOR IN STRIP

Detailed field behavior within the strip metal can be

found by utilizing the Maxwell curl equations.  If  L, w

>> δ for all guiding metals encountered, the strip will

look like a large uniform sheet in the xz-plane.  Thus

∂ ∂ /   x → 0   and ∂ ∂ /   z → 0  and for harmonic

conditions where the time variation is  ejωt, these

equations take the form

∂

∂

∂

∂
ωµ

∂

∂

∂

∂
ωε σ

E

y
x

E

y
z j

H

y
x

H

y
z j

z x
m

z x
m mˆ  ˆ  ; ˆ  ˆ− = − − = +( )H E

 (13)

In order to learn what the tangential components do when

traveling through the strip in the normal  y-direction, we
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will exclude normal Ey  or  Hy  field components, making

the waves TEMy.  Then (13) becomes

∂

∂
ωµ

∂

∂
ωε σ

E
H

H
Etan

tan
tan

tan ˆ   ;     ˆ
y

j y
y

j ym m m− × = + + × =( )0 0

 (14)

Field solution within the metal strip is

E E Htan ( )   cosh     ˆ sinhy y y y
sl m sl

= + ×γ η γ

H H Etan ( )   cosh     ˆ sinhy y y y
sl

m
sl

= − ×γ
η

γ
1

 (15)

Upper and lower tangential fields  for the metal strip are,

using (15),

E H H E H H
su u uu su ul sl sl l lu su ll sl

n Z Z n Z Z= × + = × +[ ] [ ]ˆ  ;  ˆ    

  coth  ;   
sinh

Z Z t Z Z
tuu ll m ul lu

m= = = = −η γ
η

γ

γ ωµ ωε σ η
ωµ

γm m m m m
m

m

j j
j

       ;      = + =( )
 (16)

For metals like copper, silver, and gold, it is indeed true

that σ ωεm mj  >>  [6] making γm  = (1+j)/δm , ηm =

(1+j)/σδm, δ π µ σ σ σ µ  / . / /  = =1 2 09f f mm m Cu m (f in

GHz).  Skin depth  δ  =  0.66, 0.21 µm  at  f  =  10, 100

GHz in copper.  Thus the assumption that  L, w >>  δ
holds if  w  ≥  5, 2 µm  at  f  =  10, 100 GHz, because

we are taking  L≥  w.

V. MODIFIED DYADIC GREEN S FUNCTION FOR FINITE

METAL THICKNESS

The expression for average conductor field is more

complicated than (11) based upon (16), and we won t

show it here.  Instead, look at a limiting case when one

can take  ˜   Jsui → 0 , not an unreasonable assignment for

a strip configuration when the preponderance of the

material is in a substrate form (In symmetric stripline this

is an invalid assignment.)

˜ ( , )     
  

  
 ˜

,tan ,
E Jc av i

ll ll ul ul

ll ul

sin y
Z Z Z Z

Z Z
=

−

+ (17)

Expression (17) contains both diagonal and non-diagonal

surface impedance elements, apparent if we write (16) as

E

E

H

H

su

sl
u l

uu ul

lu ll

su

sl

n n
Z Z

Z Z









 = [ ] 















×  ˆ ˆ (18)

Using the impedance element definitions in (16), the

coefficient in (17) can be evaluated to be

C
t

j t

j t

j t j t

j t

Z
m

   
( ) /

tanh ( ) /

              
cosh ( ) /

 
cosh ( ) /

  
cosh ( ) /

=
+

+
×

+
+ +

+
+

[ ]

[ ] [ ]

[ ]

















1 1

1

1
1

1

1

1

1
1

1

σ
δ

δ

δ δ

δ
(19)

Evaluating the averaging operator as a simple sum (not a

weight), (17) is replaced by

˜ ( , )        ˜
,tan ,

E Jc av i ll ul si
n y Z Z= −( ) (20)

This gives

C
t

j t

j t j tZ
m

=
+

+
+

+

( )
( )[ ] ( )[ ]









1 1

1
1

1

1σ

δ

δ δ
 

/

tanh / cosh /
(21)

Finally, if we neglect the non-diagonal matrix element  Zul

in the field impedance (16),

C
t

j t

j t
Z

m

=
+

+

( )
( )[ ]  

/

tanh /

1 1

1σ

δ

δ
 (22)

The three cases in (19), (21), and (22) generate the three

modified dyadic Green s functions.  They are respectively,

GE J

E J E J

E J E Js si

s si xx Z s si xz

s sizx s sizz Z

G C G

G G C
′ =

−
−













  
  

  

GE J
E J E J

E J E J
s si

s si xx ll ul s si xz

s sizx s sizz ll ul

G Z Z G

G G Z Z

′ =
− −

− −

( )
( )













  
    

    

GE J
E J E J

E J E Js si

s si xx ll s si xz

s sizx s sizz ll

G Z G

G G Z
′ =

−

−








  

  

  
(23)

There are three regimes of metal thickness:  t >> δ, t ¯ δ,

t << δ. When t >> δ,  CZ = 1/σmδ.  In the other extreme

when t << δ,  CZ = 1/σmt × (1,2,1). It is clear from this

last result that formulas (19) and (22) may be the

preferable ones to employ because of the unity limit

expected for t /   δ → 0 .  Equation (21) may be repairable

by dividing it by a factor of 2.

VI. NUMERICAL RESULTS FOR THE ANALYTICAL LIMITING

MODIFIED DYADIC GREEN S FUNCTION FORMULAS

It is possible to validate the some of the concepts here

in a non-anisotropic system.  We choose microstrip over a

GaAs substrate which was measured for various geometric

dimensions over the nominal 5 - 40 GHz frequency range

[7].  To compare our theoretical dyadic Green s function

modification work to experiment, we must also include

dielectric loss to obtain the total loss.  The code (basis

function number nx = nz = 3 and spectral number n = 200)

was compared to [8] for microstrip, which is also a
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full—wave calculation.  Two loss tangent cases were

investigated,  tanδ  = 2.0 × 10
-4

 and  1.0 × 10
-1

 -

agreement with our code results is excellent, within 1 %.

Now return to the experimental GaAs microstrip case

with w = 70 µm wide microstrip, with substrate height  hs

= 100  µm, relative dielectric constant  εr = 12.9,  box

height above substrate (air region) = ha = 10 mm, and box

width = b = 12.07 mm.  This   b  choice also is

consistent with [9].  The figure plots the experimental and

theoretical [using (22)] results for varying loss tangent (nx

= nz = 4 and n = 300), with metal thickness  t = 3 µm

and conductivity  σs = 4.1 × 10
7
 S/m (mostly gold).

Agreement is within a few percent.  Formula (19)

produces α slightly below (22), being 12, 4.4, 0.88, 0.26,

0.096 % at 5, 10, 20, 30, 40 GHz (tanδ = 0). Formula

(21) produces α slightly below or above (22), being —5.9,

-6.2, 0.14, 0.34, 0.12 % at 5, 10, 20, 30, 40 GHz (tanδ =

0).

VII. CONCLUSION

This paper has shown how to systematically develop

the formalism for finding dyadic Green s function

modifications, including obtaining analytical formulas,

for zero thickness conductor spectral domain codes when

studying loss of microstrip configurations. Approach

presented here has been followed also for anisotropic

ferroelectric coplanar structures, allowing description of

experimental attenuation results [10], [11].
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