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Abstract Rigorous derivation of the correction to the
dyadic Greens function for a microstrip structure
containing complex layered media is done for imperfect
metallization. A hierarchy of formulas is found consistent
with a full-wave electromagnetic code employing zero
thickness extent conductors for the guiding structure metal.
At the bottom of the hierarchy are formulas which are only
dependent on the conductor geometry and material
properties. Numerical examples show the sensitivity of the
attenuation constant to these formulas.

|. INTRODUCTION

Spectral domain codes based upon the moment method
which solve the electromagnetic integral equation problem
for a multi-layered structure can place their prime focus on
the material properties of the layers. Studies of the
various anisotropies, nonreciprocities, crystallographic
rotations, biasing field orientations in ferromagnetic or
ferroelectric materials, can all be done with such codes [1],
[2]. Theoretical investigations of this nature can be useful
in deciding what structures to construct for integrated
circuit applications [3]. Device behavior will most often
be decided by the resulting phase properties of the
transmission structures (phase shifting, coupling, delay,
for example). However, being able to reasonably
accurately predict the loss consequences of the imperfect
metallizations used in actual devices may be necessary for
the eventual development of working devices in circuits.

Full-wave electromagnetic codes employing zero
thickness extent conductors for the guiding structure metal
can be modified to account for the finite conductivity of
the metallization and thickness. @ The most straight
forward modifications, which are self-consistent in that
they avoid any perturbational approaches, will alter the
structure interfacial dyadic Green s function [4], where the
guiding metal is located, with an expression which only
depends upon the metal properties. These modifications
can be employed most broadly for different spectral
domain codes. Such modifications can be shown to come
from a more general class of modifications which require
additional structure dyadic Greens functions at the
interface.  Governing equations which employ these
additional structure dyadic Greens functions at the
interface have a form which is applicable to different

spectral domain codes, but each code will require its own
specific interfacial dyadic Greens functions to actually
effect the modification. Thus the more general approach
can not be as easily applied to different spectral domain
codes.

For situations where the metallizations are very thick
compared to other structure geometric dimensions, where
the metallization thicknesses are expected to significantly
alter the basic device behavior, or when it is desired to
obtain the nearly exact field distribution in the
metallization vicinity, the approach discussed in this paper
should not be used. Other methods are available.

Il. GENERAL THEORY

At the guiding metal interface
E = E4 + E. M

E is the total electric field vector at the interface. E4 is
the electric field vector at the interface where there is a
dielectric mismatch. E. is the electric field vector at the
interface where there is a conductor. E4 and E. are zero
outside their existence range. Since we will test this
relationship with surface currents, it is the tangential form
which is of greatest interest.

Etan = Ed, tan T Ec, tan @
Multiply the total electric field by a test surface current
vector Jg; and integrate over the interfacial coordinate x.

The result is

b b b
E J &x = E -J dx + E -J dx ®)
o tan 9§ o Ot § o Gtan g

Because Eq and Jg are complementary functions on

the finite x-space, and using Parseval’s theorem, we
obtain
E E —<|"5 (n, y)> Jim) = 0@
tan c tan al ?
N=— oo

The term in wedge brackets represents some transform
averaging over the thickness of the conductor, say over
slices taken at different y values y € [0, t ]. This
averaging is not unique.
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III. SURFACE IMPEDANCE AND DYADIC GREEN S
FuncTiON

Here will consider the conductor to be thick enough that
it can be viewed as being composed of an upper piece of
one material having a surface impedance Zs and a lower
piece having Zy . Electric field at either surface is given
by

Ee = z(fxHy) )

N is the surface normal pointing from the metal into the
upper or lower region. We find that

<Ec,tm(n’y)> :<I~Eu,tan’él,tan>

= E A x(ZgHgi-ZgHg) a

Q)
av |
Linearity property of the averaging operator ( ) has

av
been used to extract the coefficients a; and the vector

N, = Y. Upper and lower surface magnetic fields may

be related by

n xHyg + J @

Hgi = GHSJ‘]si )

Relation (7) is exact at a single interface, so it must be
viewed as an approximation for the finite thickness metal,
somewhat convincingly since the fields in it are tied
together by the single surface current characteristic of
infinitely thin Greens function spectral domain solvers.
Equation (8) may be used to eliminate unknown upper

field Hy; by using a magnetic dyadic Greens function

for the unknown lower field H gi» giving the modified

- <zw(ﬁu X GESjsi +1),—Zsl(ﬁu X GESjSi )>av
)

The above reduction is valid if the averaging operation is
strictly linear, in actuality required in a rigorous sense
since the Green’s function approach is a linear process.
Equation (9) is a rather remarkable result, as it allowed us
to write down by inspection the new Green’s function for
the finite sized and finite conductivity metal strip in our
anisotropic layered structure. We will not pursue this
approach further, other than to say that although the form
has been presented, it does not prove that in fact such a
closed form representation can be found. Instead, in order
to have some specific rules for constructing the average,
resort to a procedure found in [5]. For any two spectral

vectors A and B , the average is

G . =G_.
Esdg Esdg

(A, é>aV_AXIAXI+BIBI AR+ BB,
A +[By] ]+ [B,|

Inversion of the magnitudes in formula (10) will make the
averaging operator nonlinear, showing that such a
construction to account for finite thickness and
conductivity of the metal must be an approximation, since

the actual problem is linear in the current J

z (10)

s-

Nevertheless, we will enlist this formula to have
something definite to discuss. From (10),
< ctan(n y)> _ su SUXI|ZSUJSJXI| + Z JS|XI|Z JS|XI|

| |ZSU SUXI| + |Zsl‘]s|><||
Zsu jsuzi| SU SUZI| + Z JS|Z||Z ‘J:s|2||Z
Zadgus| + 29344

+
Su“'suz
(11

Equation (11) produces what can only be called an
improper Green’s function. Consider what happens when
the upper and lower surface impedances are equal,

Zy = Zy»
suxi Jsuxi jsb(i js|xi 0
G ’ -G _z (‘jsuxi + ‘jdxi )jsd
"< T 0 Yo Y| * Yaaua
(3. )2y
(12)

This type of Green’s function only has meaning when used
difference field found in the
testing procedure (4). And it is not unique - only when

4

is the result unique. GEsjg has

to reconstruct the |~ESi

multiplied by J

been shown to demonstrate the intrinsic complexity of
trying to get a tractable modified Green’s function using
the averaging method in (10).

IV. TANGENTIAL FIELD BEHAVIOR IN STRIP

Detailed field behavior within the strip metal can be
found by utilizing the Maxwell curl equations. If L, w
>> § for all guiding metals encountered, the strip will
look like a large uniform sheet in the xz-plane. Thus
dlox - 0 and J/dz — 0 and for harmonic
conditions where the time wvariation is  e®, these
equations take the form

oE oE oH H
—£3 _—Xiz_ja)ymH L —2% ——Xiz(ja)em+0m)E
% % ¥ ¥

(13)

In order to learn what the tangential components do when
traveling through the strip in the normal y-direction, we

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



will exclude normal E, or Hy, field components, making
the waves TEM,. Then (13) becomes

Etan

%

—tan (jwsm+om)9>< En =0

(14)

—jouyxHg =0
Field solution within the metal strip is
Ean(y) = ESI coshyy + nmf/x Hsl sinhyy
Hin(y) = HsI coshyy — ni)?x Eg sinhyy (15)
Upper and lower tangential fields f[gr the metal strip are,

using (15),
E =n X[Z Hy+Z H ];E =ﬁ><[ZH +Z H ]
su u uu u g d | lu su I d

7 _ 7 7 - __m
Zuu - ZII _nmCOthyt ' ZuI - ZIu - Sinh}/(
— jou
Y

m  (16)

For metals like copper, silver, and gold, it is indeed true
that o, >> jwe, [6] making yn = (14)/0y,,Mn =
(14))/08, 8 = 1/ aupop = 209/ f log, /oy um(f in
GHz). Skin depth & = 0.66, 0.21 um at f = 10, 100
GHz in copper. Thus the assumption that L, w >> §

holdsif w > 5, 2 um at f = 10, 100 GHz, because
we are taking L> w.

V. MODIFIED DYADIC GREEN S FUNCTION FOR FINITE
METAL THICKNESS

The expression for average conductor field is more
complicated than (11) based upon (16), and we won't
show it here. Instead, look at a limiting case when one

can take J — 0, not an unreasonable assignment for

Ssui
a strip configuration when the preponderance of the
material is in a substrate form (In symmetric stripline this

is an invalid assignment.)

= Z”‘Z”‘— Zul%ul -
<Ec,tan(n1 y)> . e ‘]Si
ant Z |+ |z
‘ ||‘ ul (17)
Expression (17) contains both diagonal and non-diagonal
surface impedance elements, apparent if we write (16) as

i R ] [
= X
Eq 0 Zu 4| Hs

Using the impedance element definitions in (16), the
coefficient in (17) can be evaluated to be

c - 1 @+is
z ot tanh[(1+ j)t/ 5]
1+ 1 1
cosh[(1+ )t/ 6] |cosh[(x+ j)t/ ]
1

1+
|cosh[(1+ j)t/ ]|
(19)

Evaluating the averaging operator as a simple sum (not a
weight), (17) is replaced by

<Ec,tan(n’Y)>‘,jN’i = (ZII -
This gives
1 (1+j)/s

1
2= ot tanh[(1+ )t/ 8] {“ cosh[(1+ j)tlé]}(
Finally, if we neglect the non-diagonal matrix element Z,
in the field impedance (16),
1 (1+j)ss
ont tanh[(1+ )t/ 3]
The three cases in (19), (21), and (22) generate the three

modified dyadic Green s functions. They are respectively,
, Ge - G, G

z,) 3, @

21)

Cz = (22)

G _ SJSiXX SJsixz
Esls GESJSizx GESJSizz - G
. GESJSixx - (ZII - Zul) Esdgxz
Els GESJSizx GESJS-ZZ - (Zn - Zul)
GESJ -’ = |:GES(‘;S.XX A G GESJSii(Z 7 } (23)
s Egdg 2 EslgZ ]

There are three regimes of metal thickness: t >> 3, t ~ 9,
t<< 3. Whent >>9, C; = 1/6,,0. In the other extreme
when t << 3, Cz = l/ontX(1,2,1). It is clear from this
last result that formulas (19) and (22) may be the
preferable ones to employ because of the unity limit
expected for t/5 — 0. Equation (21) may be repairable
by dividing it by a factor of 2.

VI. NUMERICAL RESULTS FOR THE ANALYTICAL LIMITING
MODIFIED DYADIC GREEN S FUNCTION FORMULAS

It is possible to validate the some of the concepts here
in a non-anisotropic system. We choose microstrip over a
GaAs substrate which was measured for various geometric
dimensions over the nominal 5 - 40 GHz frequency range
[7]. To compare our theoretical dyadic Greens function
modification work to experiment, we must also include
dielectric loss to obtain the total loss. The code (basis
function number n, = n, = 3 and spectral number n = 200)
was compared to [8] for microstrip, which is also a
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full—wave calculation. = Two loss tangent cases were
investigated, tand = 2.0X10" and 1.0X10" -
agreement with our code results is excellent, within 1 %.

Now return to the experimental GaAs microstrip case
with w = 70 um wide microstrip, with substrate height hs
= 100 um, relative dielectric constant &, = 12.9, box
height above substrate (air region) = h, = 10 mm, and box
width = b = 12.07 mm. This b choice also is
consistent with [9]. The figure plots the experimental and
theoretical [using (22)] results for varying loss tangent (ny
=1, = 4 and n = 300), with metal thickness t =3 pum
and conductivity o, = 4.1X10" S/m (mostly gold).
Agreement is within a few percent. Formula (19)
produces « slightly below (22), being 12, 4.4, 0.88, 0.26,
0.096 % at 5, 10, 20, 30, 40 GHz (tand = 0). Formula
(21) produces o slightly below or above (22), being —5.9,
-6.2, 0.14, 0.34, 0.12 % at 5, 10, 20, 30, 40 GHz (tand =
0).

Strip Dyadic Green's Function Modification Term: Metallic
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VII. CONCLUSION

This paper has shown how to systematically develop
the formalism for finding dyadic Greens function
modifications, including obtaining analytical formulas,
for zero thickness conductor spectral domain codes when
studying loss of microstrip configurations. Approach
presented here has been followed also for anisotropic
ferroelectric coplanar structures, allowing description of
experimental attenuation results [10], [11].
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